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We developed a knowledge-based statistical energy function for protein-ligand, protein-protein,
and protein-DNA complexes by using 19 atom types and a distance-scale finite ideal-gas
reference (DFIRE) state. The correlation coefficients between experimentally measured protein-
ligand binding affinities and those predicted by the DFIRE energy function are around 0.63
for one training set and two testing sets. The energy function also makes highly accurate
predictions of binding affinities of protein-protein and protein-DNA complexes. Correlation
coefficients between theoretical and experimental results are 0.73 for 82 protein-protein
(peptide) complexes and 0.83 for 45 protein-DNA complexes, despite the fact that the structures
of protein-protein (peptide) and protein-DNA complexes were not used in training the energy
function. The results of the DFIRE energy function on protein-ligand complexes are compared
to the published results of 12 other scoring functions generated from either physical-based,
knowledge-based, or empirical methods. They include AutoDock, X-Score, DrugScore, four
scoring functions in Cerius 2 (LigScore, PLP, PMF, and LUDI), four scoring functions in SYBYL
(F-Score, G-Score, D-Score, and ChemScore), and BLEEP. While the DFIRE energy function
is only moderately successful in ranking native or near native conformations, it yields the
strongest correlation between theoretical and experimental binding affinities of the testing
sets and between rmsd values and energy scores of docking decoys in a benchmark of 100
protein-ligand complexes. The parameters and the program of the all-atom DFIRE energy
function are freely available for academic users at http://theory.med.buffalo.edu.

Introduction

The common bottleneck behind computational studies
on protein-structure prediction,1 structure-based ligand
design,2,3 protein-protein docking prediction,4 and pre-
diction of protein-DNA interaction5-7 is the lack of a
precise and reliable free energy function that describes
the water-mediated atomic interaction between amino
acid residues and other molecules. Obtaining an ac-
curate energy function is challenging because the stabil-
ity of proteins themselves as well as specific binding
between proteins and other molecules is the result of
the delicate balance among several different types of
interactions,8,9 such as van der Waals’ (packing), hy-
drophobic (solvent-induced), hydrogen-bonding, polar,
and charge-charge interactions. Additional complica-
tions arise from the fact that complementarity in shape,
hydrogen-bonding, polar, and charge-charge interac-
tions is required for structural specificity of folding and
binding (molecular recognition). Many approaches have
been used to obtain approximate energy functions. The
existing energy functions for protein-ligand (and/or
protein-protein) interactions can be classified as physi-
cal-based force fields,10-13 empirical scoring functions,14-18

and knowledge-based statistical potentials.19-27

In this paper, we focus on knowledge-based statistical
potentials, which derive energy functions from statisti-
cal analysis of known structures of proteins or protein-
ligand (or protein-protein) complexes. Knowledge-based
potentials are attractive because they are simple to
construct and easy to use. However, existing statistical
energy functions are often associated with some proper-
ties that are not physical. For example, long-range
repulsion is observed28 between hydrophobic residues
in the statistical energy function based on the commonly
used Sippl approximation.29 In addition, statistical
potentials are strongly database dependent. For ex-
ample, the potential extracted from all-R protein struc-
tures is quantitatively different from that extracted
from all-â protein structures.30 The structural database
of single-chain proteins and the structural database of
dimeric interfaces also yielded different statistical po-
tentials for folding and binding.26,31 To our knowledge,
the database dependence of statistical potentials for
protein-ligand interactions is not yet tested. The
database dependence reflects the fact that proteins are
inhomogeneous mixture of amino acid residues and the
different compositions of amino acid residues in different
structural databases lead to different statistical outcome
(i.e. the energy function). This strong database depen-
dence is often used to produce a system-specific statisti-
cal energy function to improve the performance of the
energy function for a given system. For example, the
knowledge-based potential based on the structural

* Corresponding author. Phone: (716) 829-2985. Fax: (716) 829-
2344. E-mail: yqzhou@buffalo.edu.

† State University of New York at Buffalo.
‡ These two authors contribute equally to this work.
§ Fudan University.

2325J. Med. Chem. 2005, 48, 2325-2335

10.1021/jm049314d CCC: $30.25 © 2005 American Chemical Society
Published on Web 02/16/2005



database of dimeric interfaces improves the success rate
of selecting native complex structures from decoys over
the potential based on the structural database of mono-
meric proteins.26 The database dependence, however,
might have limited the accuracy of statistical energy
functions because the dependence does not occur in a
real physical interaction (assuming that pairwise in-
teractions are dominant). After all, the same underlying
physical interaction (the water-mediated interaction
between amino acid residues) is responsible for folding
and binding and for the formation of R-helices and the
formation of â-sheets.

Various knowledge-based potentials differ in choice
of reference state,32 which is used for estimating sta-
tistics in the absence of any interactions. A reference
state is required for obtaining the net contribution of
atomic interactions to the statistical results based on
known structures by removing the contribution from a
zero-interaction reference state. Most existing reference
states are represented by a state that was averaged
either over different atom types19-21,25,26,29 or over
distance.22,23,32 Recently, we introduced a new knowledge-
based potential based on a distance-scaled, finite, ideal-
gas reference (DFIRE) state.33 Remarkably, this refer-
ence state yields a potential of mean-force that no longer
possesses some unphysical characteristics associated
with other statistical potentials. It was shown that the
accuracy of DFIRE-based potential is insensitive to
whether residues at the surface or inside core of proteins
are treated as separate residue types.33 More impor-
tantly, the new structure-derived potential can quan-
titatively reproduce the likelihood of a residue to be
buried (i.e. the composition difference of amino acid
residues between core and surface).34 The potential also
produces a stability scale of amino acid residues in
quantitative agreement with that independently ex-
tracted from mutation experimental data.34 Moreover,
the “monomer” potential (derived from single-chain
proteins) is found to be successful in discriminating
native structure against docking decoys, distinguishing
true dimeric interface from crystal interfaces, and
predicting binding free energy of protein-protein and
protein-peptide complexes.35 In addition, the DFIRE
potential is less dependent on the structural database
used for training than two other commonly used sta-
tistical potentials.36 The independence of the perfor-
mance on amino acid composition suggests that the
DFIRE-based potential captures the essence of the
common physical interaction masked under different
compositions of amino acid residues on the surface, core
and interface of proteins.

The success of the DFIRE-based statistical energy
function for predicting protein-protein (peptide) binding
affinity35 provides the incentive for extending the
DFIRE-based energy function for predicting binding
affinity between protein and organic molecule. The
original DFIRE energy function was derived on the basis
of residue-specific atom types. That is, each atom in
different amino acid residues was treated as an atom
type. This leads to a total of 167 atom types for amino
acid residues alone. Here, we use only 19 atom types to
characterize the interaction not only between protein
and protein but also between protein and ligand and
between protein and DNA. The resulting energy func-

tion is compared to 12 different scoring functions for
protein-ligand interactions. The energy function is also
applied to predict protein-protein and protein-DNA
binding affinities.

Methods
DFIRE-Based Potential. The derivation of equations and

the method for extracting the DFIRE-based potential using a
structure database have been described previously.33 Here, we
give a brief summary for completeness.

The atom-atom potential of mean force, uj(i,j,r), between
atom types i and j that are distance r apart is given by33

where R is the gas constant, T ) 300 K, Nobs(i,j,r) is the number
of (i,j) pairs within the distance shell r(r - ∆r/2 to r + ∆r/2)
observed in a given structure database, rcut ) 14.5 Å, and
∆r(∆rcut) is the bin width at r(rcut). (∆r ) 2 Å, for r < 2 Å; ∆r
) 0.5 Å for 2 Å< r <8 Å; ∆r ) 1 Å for 8 Å< r <15 Å.) The
exponent R is found to be 1.61 on the basis of a state of
uniformly distributed points in finite spheres.33

Atom Types. Unlike the residue-specific atom types used
in our previous work, we use 19 atom types to cover protein-
ligand, protein-protein, and protein-DNA interactions. The
atom types and definitions are shown in Table 1. These atom
types are derived from those used in the program SYBYL.37

All metal atoms are unified as one atom type: Met. Clearly,
this small number of atom types is a crude approximation.
We defer finer classification to future work.

Training Structural Databases. To calculate Nobs(i,j,r),
one needs a structural database for training. The DFIRE
potential was trained from a set of 200 protein-ligand
structures, collected by Wang et al.18 to train their X-Score
scoring function. This set is a dataset of high resolution (<3.0
Å) of structures of proteins complexed with small organic
noncovalently binding ligands (MW < 1000) but without
additional binding cofactor. The dataset contains 70 different
types of proteins, whose protein-ligand binding affinities vary
over 10 orders of magnitude.

To test the dependence of the DFIRE potential on the
training structural database, we also used one additional
structural database of 1011 single-chain, nonhomologous (less
than 30% homology) proteins with resolution <2 Å (http://
chaos.fccc.edu/research/labs/dunbrack/culledpdb.html).38 This
database was used to generate the residue-specific all-atom
DFIRE-based energy function.33 It is employed here to test the
effect of the number of atom types on the accuracy of the
DFIRE-based energy function. All results reported here are
based on the 200 protein-ligand data set, unless otherwise
stated.

Table 1. List of 19 Atom Types Used in Protein-Ligand,
Protein-Protein, and Protein-DNA Interactions

atom
type atoms

atom
type atoms

C.2 sp2 carbon C.3 sp3 carbon
C.ar aromatic carbon C.cat other carbon
N.2 sp1,sp2,sp3 nitrogen N.4 quaternary nitrogen
N.am amide nitrogen N.ar aromatic nitrogen
N.p13 trigonal nitrogen O.2 sp2 oxygen
O.3 sp3 oxygen O.co2 carboxy oxygen
P.3 all phosphorus atoms S.3 all sulfur atoms

except sulfone sulfur
S.o2 sulfone sulfur F fluorine
Cl chlorine Br bromine

Met all metal atoms and
other atoms not listed
above

uj(i,j,r) ) {-RT ln
Nobs(i,j,r)

( r
rcut

)R( ∆r
∆rcut

)Nobs(i,j,rcut)
r < rcut

0 r g rcut
(1)
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Binding Free Energy. The total atom-atom potential of
mean force, G, for each structure is given by

where the summation is over all atomic pairs. The binding
free energy of a dimer AB is obtained as follows:

Since the structures of monomers are approximated as rigid
bodies and the atoms at the binding interface contribute most
to ∆Gbind, eq 3 can be further simplified to

where the summation is over any two atoms belonging to an
“interacting” atomic pair from different chains at the interface.
An interacting atomic pair is one pair of heavy atoms within
9.5 Å of each other. Other cutoff values were also tested. See
discussion for details.

Testing Sets for Binding Affinity and Docking. We
compare the performance of 11 scoring functions with that of
the DFIRE energy function in predicting protein-ligand
binding affinity and docking structure selections based on the
benchmarks established by Wang et al.39 The 11 scoring
functions are Autodock,11 LigScore, PLP,15,40 PMF,22 LUDI,14

F-Score,16 G-Score,10 D-Score,13 ChemScore,17 DrugScore,23 and
X-Score.18,39 Among these scoring functions, PMF and Drug-
Score are statistical potentials as DFIRE.

In addition, we compared the DFIRE energy function with
another statistical potential, BLEEP,20,21 using the data
downloaded from the Protein Ligand Database (PLD)
(http://www-mitchell.ch.cam.ac.uk/pld/).

To further test the DFIRE energy function, experimental
binding free energies of 82 protein-protein (peptide) complexes
and 45 protein-DNA complexes all with known three-
dimensional structures were collected from the literature.

Results
The Potential. The DFIRE-based energy functions

between atom types O.3 and S.3 and between C.2 and
N.4 are shown in Figure 1 as an example. Two sets of
curves are the two DFIRE potentials obtained from the
training structural database of 1011 proteins and that
of 200 protein-ligand complexes, respectively. There are
some differences between the two potentials (near the
hard-repulsive core region, in particular). However, as
we shall see below, the differences only have a minor
effect on the overall accuracy of the potential for
predicting binding affinity.

Prediction of Protein-Ligand Binding Affinity
Based on X-Score Training and Testing Sets. The
abilities of the DFIRE and X-Score energy functions18

to predict binding affinity are compared in Figure 2. It
should be noted that the DFIRE energy and X-Score
energy functions shared the same training and testing
sets. However, different information was used. The
DFIRE energy used the structural information of the
200 protein-ligand complexes, whereas the X-Score
used binding affinities of the 200 complexes directly for
least-squares multivariate regression. In Figure 2, the
experimentally measured binding affinities of 30 testing
protein-ligand complexes are compared to those pre-
dicted by the DFIRE energy function and by X-Score.
The correlation coefficients given by the DFIRE energy
function are 0.62 for the training set and 0.63 for the

testing set, respectively. The corresponding numbers
given by X-Score are 0.76 and 0.56, respectively.18 Thus,
the performance of the X-Score is more dependent on
the data set while the performance of DFIRE is robust.

Figure 1. The DFIRE-based energy functions between O.3
and S.3 and between C.2 and N.4 as a function of distance.
Solid and dashed lines are the energy functions trained with
the structure database of protein-ligand complexes and that
of single-chain proteins, respectively.

Figure 2. The theoretically predicted protein-ligand binding
free energy versus experimentally measured ones for 30
complexes in the X-Score testing dataset.18 To facilitate
comparison, the DFIRE energy function was scaled with a
constant scaling factor of 0.0051 and shifted by -3.84 in log
KD units based on the training set. The solid line is from the
regression fit. (a) XSCORE and (b) DFIRE.
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2 ∑
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The performance of DFIRE is further tested by a set
of 100 protein-ligand binding data collected by Wang
et al.39 This data set is a high-resolution subset of the
training and testing data sets of 230 protein-ligand
complexes. Results are shown in Figure 3. The correla-
tion coefficient for this subset between experimentally
measured and DFIRE-predicted binding affinities is
0.63. This correlation coefficient is only lower than that
of X-Score but is higher than those of all other 10 scoring
functions, as shown in Table 2. The correlation coef-
ficients given by the latter 10 scoring functions range
from 0.05 to 0.57. However, this set is not an indepen-
dent testing set for the performance of either DFIRE
or X-Score, because most complexes in the set of 100
complexes were used in training X-Score and DFIRE.
To address this problem, we also applied the DFIRE
energy function trained by 1011 single-chain proteins
to this 100 protein-ligand complexes. The new DFIRE
energy function achieved a similarly strong correlation
between theoretical and experimental binding affinities
(with a correlation coefficient of 0.66). This confirms that
the performance of DFIRE is relatively independent of
the structural database used for training. Moreover, it
suggests that the DFIRE energy function gives the
highest correlation coefficient among 11 scoring func-
tions (except X-Score) for an independent testing set of
100 complexes.

Protein-Ligand Docking Decoys. It is important
to have a statistically significant correlation between
experimentally measured binding affinities and theo-

retical values predicted from known complex structures.
However, in practice, the structures of complexes often
are not known. Thus, it is important to apply an energy
function directly to docking decoys.

Docking decoys for the above-mentioned 100 protein-
ligand complexes are generated by Wang et al.39 using
the program AutoDock 3.0.11 Each ligand has 101
docked conformations (including native conformations).
Table 3 shows the success rates given by 12 different
energy functions in selecting native or near-native
conformations. The DFIRE energy function gives only
a modest success rate similar to that of AutoDock.

Another method to characterize the ability to detect
near native conformation is to calculate the correlation
coefficient between the energy and rmsd values of the
decoy conformations. Table 4 lists the number of protein-
ligand complexes whose correlation coefficients are
greater than or equal to a given number. (The Spearman
correlation coefficient is used here for a convenient
comparison with previous work.39) The results of 12
different energy functions are shown. The DFIRE
energy function has a higher number of significant
correlations than other energy functions. For example,
the number of complexes with R g 0.6 is 63 for DFIRE
but is 53 for the next best (X-Score).

One problem often encountered in structure-based
drug design is how to predict protein binding affinity
without knowing the structures of protein-ligand com-
plexes. To test the DFIRE energy function on this
aspect, we use the lowest energy of docking decoys in a

Figure 3. The theoretically predicted protein-ligand binding
free energy versus experimentally measured ones for the 100
high-resolution protein-ligand set. The DFIRE energy func-
tion was scaled and shifted as in Figure 2. Ligands with
different charges are shown in different colors as labeled.

Table 2. Correlation Coefficients between Theoretically
Predicted and Experimentally Measured Binding Affinities for
100 Protein-Ligand Complexes

scoring
functions

corr
coeff

scoring
functions

corr
coeff

DFIREa 0.63b (0.66c) SYBYL/ChemScored 0.47
X-Scored 0.64b Cerius2/LUDId 0.37
Cerius2/PLPd 0.55 Cerius2/PMFd 0.40
DrugScored 0.57 Cerius2/LigScored 0.35
SYBYL/G-Scored 0.56 SYBYL/F-Scored 0.30
SYBYL/D-Scored 0.48 AutoDockd 0.05

a This work. b Many of the 100 complexes were used in training
X-Score and DFIRE. c Results from DFIRE training by the struc-
tures of 1011 single-chain proteins. d Results from Wang et al.39

Here we reported their results in term of correlation coefficients.

Table 3. Success Rates for Selecting Native or Near-Native
Conformations under Different rmsd Cutoffs Given by 12
Different Scoring Functionsa

scoring function e1.0 Å e1.5 Å e2.0 Å e2.5 Å e3.0 Å

DFIRE 37 52 58 61 64
Cerius2/PLP 63 69 76 79 80
SYBYL/F-score 56 66 74 77 77
Cerius2/LigScore 64 68 74 75 76
DrugScore 63 68 72 74 74
Cerius2/LUDI 43 55 67 67 67
X-Score 37 54 66 72 74
AutoDock 34 52 62 68 72
Cerius2/PMF 40 46 52 54 57
SYBYL/G-score 24 32 42 49 56
SYBYL/ChemScore 12 26 35 37 40
SYBYL/D-Score 8 16 26 30 41

a All results except DFIRE are taken from Wang et al.39

Table 4. Number of Complexes Whose Spearman Correlation
Coefficients between rmsd Values and Energy Scores of
Docking Decoys Are Greater than a Cutoff Value

scoring functions Rs g 0.8a Rs g 0.6a Rs g 0.4a

DFIREb 23 63 88
X-Scorec 19 53 77
DrugScorec 21 46 73
AutoDockc 12 42 71
Cerius2/PLPc 13 39 67
SYBYL/D-Scorec 9 39 67
Cerius2/PMFc 21 38 61
Cerius2/LUDIc 8 37 66
SYBYL/F-Scorec 9 34 72
SYBYL/G-Scorec 6 28 56
Cerius2/LigScorec 4 26 49
SYBYL/ChemScorec 1 16 41

a The Spearman correlation coefficient between theoretically
predicted binding free energies and rmsd values given by 12
different energy scoring functions as in ref 39. b This work. c From
ref 39.
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protein-ligand complex as the predicted binding affin-
ity, regardless if the complex structure is close or not
to the native complex structure (all native structures
are removed from the decoy sets). The correlation
coefficient between experimental results and the lowest
binding affinities of docking decoys is 0.64. Thus, the
accuracy for predicting binding affinities does not
change much even though most structures with the
lowest DFIRE energy scores are not close to the native
complex structures (Table 3).

Prediction of Protein-Ligand Binding Affinities
Based on the PLD Set. We downloaded the entire data
set from PLD41 (the version of Jan. 10, 2004), which
contains the PDB ID, experimental binding affinity, and
the binding affinity predicted by the program BLEEP.
Only protein-ligand complexes that have the experi-
mental binding affinities were kept. It contains 268
complexes (a list is provided in http://theory.med.buf-
falo.edu). Figure 4 compares the experimentally mea-
sured binding affinities for the 268 complexes with those
predicted by DFIRE and BLEEP. The correlation coef-
ficient is 0.60 for DFIRE and 0.58 for BLEEP. Figure 4
further indicates that BLEEP’s predictions deviate more
from the regression line than DFIRE’s predictions. The
root-mean-squared deviation between theoretically pre-
dicted and experimentally measured binding affinities
(in log KD units) is 2.41 for DFIRE and 2.95 for BLEEP.

Among 268 complexes, 139 complexes are in the
training set of the 200 protein-ligand complexes for the
DFIRE energy function. The rest (129 complexes) can
serve as an independent testing set for DFIRE. The
correlation coefficient for this testing set is 0.64 by
DFIRE and 0.59 by BLEEP. Thus, the overall accuracy
of binding affinities predicted by DFIRE does not change
for the training or testing set as demonstrated in the

performance of DFIRE in X-Score training and testing
benchmarks.

Protein-Protein and Protein-DNA Complexes.
The DFIRE trained by the structures of proteins with
small ligands (MW < 1000) can also give an accurate
prediction of the binding affinity of protein-protein and
protein-DNA complexes. Theoretically predicted and
experimentally measured binding affinities for protein-
protein and protein-DNA complexes are shown in
Figures 5 and 6, respectively. Significant correlations
are found in both cases with a correlation coefficient of
0.73 for 82 protein-protein (peptide) complexes and 0.83
for 45 protein-DNA complexes. The results are also
tabulated in Tables 5 and 6.

Discussion

In this paper, we extended the DFIRE-based energy
originally developed for intra- and interprotein inter-

Figure 4. The theoretically predicted protein-ligand binding
free energy versus experimentally measured ones for PLD
dataset (268 complexes). The DFIRE energy function was
scaled and shifted as in Figure 2. Solid lines are from the
regression fit. (a) BLEEP and (b) DFIRE. The range of the
predictions from DFIRE appears to be narrower than that of
experimental data because the scaling factor and shift were
from the training set.

Figure 5. The theoretically predicted protein-protein (pep-
tide) binding free energy versus experimentally measured
ones. The line is from linear regression fit with a correlation
coefficient of 0.73. To facilitate comparison, the DFIRE energy
function was scaled with a constant scaling factor of 0.0059
and shifted by -5.35 in kcal/mol. The dashed line is from the
regression fit. It is same as the x ) y line because of artificial
scaling employed for clear view.

Figure 6. The theoretically predicted protein-DNA binding
free energy versus experimentally measured ones. The line is
from linear regression fit with a correlation coefficient of 0.83.
To facilitate comparison, the DFIRE energy function was
scaled with a constant scaling factor of 0.0017 and shifted by
-5.50 in log KD units. The dashed line is from the regression
fit.
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actions to protein-ligand and protein-DNA inter-
actions. This was achieved by using 19 atom types that
not only represent atoms contained in proteins but also
those used by ligands and DNA. The resulting energy
function is shown to be one of the best energy functions
for the prediction of the binding affinities of protein-
ligand complexes when compared to 12 other scoring
functions for all testing sets used in this study. More-
over, the energy function without any modification can
be used directly to predict the binding affinities of
protein-protein and protein-DNA complexes with a
high accuracy. The comparison made here, however, is
based solely on published results. It is possible that
unpublished upgrades of the compared methods may
perform better than DFIRE.

A correlation coefficient of 0.6 for protein-ligand
complexes, however, is far from perfect. It is of interest
to analyze the performance of the DFIRE energy func-
tion against different ligand types. Because the DFIRE
energy function has a cutoff at 15 Å, the cutoff may lead
to a poor modeling of long-range charge-charge interac-
tions than the modeling of the interactions between a
neutral ligand and a protein. Thus, one might expect
that DFIRE would give a better prediction for neutral

ligands than for charged ligands. The results for ligands
with different net charges (ranging from -4 to +2) are
compared in Figure 3 for the 100 high-resolution
protein-ligand complexes. The correlation coefficients
are 0.60 for 46 neutral ligands, 0.86 for 22 positively
charged ligands, 0.59 for 32 negatively charged ligands,
and 0.71 for all 54 charged ligands. Within the nega-
tively charged ligands, the correlation coefficients are
0.63 for 12 ligands with -1 charge and 0.77 for 14
ligands with -2 charge. Thus, contrary to our expecta-
tion, the DFIRE energy function appears to yield a
better correlation for charged ligands. However, the
correlation coefficients vary from 0.59 to 0.86, depending
on how charged ligands are grouped. Therefore, the
difference for different charge types observed here may
be due to the small number of protein-ligand complex
structures. There also appears that the regression slope
for charged ligands is steeper than for neutral ligands.
However, the difference is likely smaller than the error
associated with regression analysis. Similar results were
obtained when dividing ligands in term of their chemical
complexity (the number of atom types). Thus, more
studies are needed to further identify the source for the

Table 5. Comparison between Experimentally Measured Binding Free Energies and the Theoretically Predicted Ones

PDB IDa interfaceb explc DFIREd PDB IDa interfaceb explc DFIREd

1hbs ABCD/EFGH -4.842 -8.89 2tpi ZI/S -5.843 -7.09
1tce A/B -5.844 -8.44 1ak4 A/C -6.545 -9.40
1lck A/B -7.044 -8.76 1b4z A/B -7.146 -8.60
1b46 A/B -7.246 -8.63 2olb A/B -7.646 -8.73
1lcj A/B -7.844 -8.54 3tpi Z/S -7.847 -7.16
1b3l A/B -8.046 -8.13 1qka A/B -8.146 -8.88
1b9j A/B -8.146 -8.8 2pld A/B -9.044 -9.83
1b58 A/B -9.046 -9.51 1sps A/D -9.144 -8.34
1dkz A/B -9.148 -9.33 1b3g A/B -9.246 -8.76
1jeu A/B -9.346 -8.66 1b3f A/B -9.446 -8.85
1jev A/B -9.446 -9.78 1ola A/B -9.541 -8.93
1b5i A/B -9.646 -8.73 1b05 A/B -9.746 -8.55
1b32 A/B -9.746 -8.86 1b52 A/B -9.746 -8.60
2er6 E/I -9.841 -11.32 1jet A/B -9.846 -11.50
1b40 A/B -9.946 -9.27 1b51 A/B -10.046 -8.42
1qkb A/B -10.046 -8.66 1nmb HL/N -10.049 -12.09
2pcc A/B -10.050 -10.01 1b5j A/B -10.146 -8.89
1gua A/B -10.151 -10.38 1dkg AB/D -10.352 -13.38
1ycs A/B -10.353 -11.33 1fdl HL/Y -11.454 -12.08
1vfb AB/C -11.455 -12.50 2jel HL/P -11.556 -12.14
1abi HL/I -11.657 -12.57 1ebp A/C -11.758 -8.03
4sgb E/I -11.759 -11.73 1jhl HL/A -11.860 -12.55
1nsn HL/S -11.861 -13.31 2kai AB/I -12.462 -13.27
2sic E/I -12.763 -13.13 3sgb E/I -12.764 -10.80
1igc HL/A -12.765 -11.50 1hwg A/C -13.066 -12.51
1cse E/I -13.167 -12.20 3hfm HL/Y -13.368 -14.55
1ppf E/I -13.469 -12.72 3hhr A/C -13.670 -12.34
1tec E/I -14.067 -12.71 3hfl HL/Y -14.543 -13.11
1cho E/I -14.671 -13.08 4htc HL/I -15.472 -15.68
2sni E/I -15.873 -12.91 3ssi symmetrye -16.074 -13.07
1acb E/I -16.175 -12.43 1bth HL/P -16.566 -14.30
1efn A/B -16.676 -10.88 1brs B/E -17.377 -13.00
1tbq JK/S -17.378 -17.79 4tpi Z/I -17.779 -12.37
1tpa E/I -17.843 -12.40 1dfj E/I -18.080 -16.50
2ptc E/I -18.181 12.36 1avw A/B -12.382 -15.33
1fss A/B -14.983 -14.16 1stf E/I -13.584 -13.83
1ahw AB/C -11.585 -15.96 1mLc AB/E -9.782 -12.73
1wej LH/F -9.582 -12.03 1bql LH/Y -14.582 -12.96
1mel M/B -10.586 -13.29 1avz B/C -6.487 -10.50
1mda LH/A -7.388 -11.58 1a0o A/B -8.182 -9.95
1atn A/D -11.889 -10.64 1gla G/F -6.790 -8.77

a The database does not include proteins with metal atoms and other non-amino acid components at the interface. b The chain IDs that
make the interface. c Experimental results (in kcal/mol). d Predicted values (in kcal/mol) by the DFIRE energy function scaled by a constant
factor of 0.0059 and shifted by -5.35 kcal/mol. e The second component of complex 3ssi was generated with the symmetry axis provided
by the PDB file.
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errors in binding prediction so that the accuracy of
predicting binding affinity can be further improved.

The 19 atom types (12 for amino acid residues) used
in the DFIRE energy function for protein-ligand inter-
action are a significant reduction from 167 residue-
specific atom types for 20 amino acid residues used in
the original DFIRE for protein folding and protein-
protein binding studies.27,33 This significantly smaller
number of atom types leads to a change of correlation
coefficient from 0.79 to 0.73 for 82 protein-protein/
peptide complexes. This suggests that an expansion of
atom types may be useful to improve somewhat the
prediction accuracy of binding affinity. Work in this area
is in progress.

One parameter used in this study is the cutoff
distance used to define atoms in the binding interface.
We found that changing this cutoff distance (9.5 Å used
here) does not make a significant change in overall
correlation between experimentally measured and theo-
retically predicted binding affinities. The value 9.5 Å is
found to be an optimal cutoff value for the modest
success rate in native (or near-native) discrimination.
The success rate is 35%, 37%, and 35% at a cutoff
distance of 9, 9.5, and 10 Å, respectively. However, it is
not an optimal value for the number of complexes with
significant correlations. A larger cutoff (for example, 10
Å) increases the number of complexes with higher
correlation coefficients (e.g. 23 increases to 26 for Rs g
0.8, also See Table 4). This result suggests that a higher
correlation coefficient between rmsd and energy score
does not necessary mean an increase in success rate for
ranking native or near native conformation based on
energy scores. This perhaps explains why different
methods rank so differently in Tables 3 and 4. For
example, X-Score is ranked number 2 in Table 4 but
number 7 in Table 3 if a near native is defined as an
rmsd of e1.0 Å. Cerius2/PLP is ranked number 1 in
Table 3 but only number 5 in Table 4.

There is one feature that distinguishes the atomic
DFIRE energy function from many existing empirical

and statistical energy functions. That is, the DFIRE’s
performance is robust against the database used to train
the energy function. For example, the DFIRE energy
function for protein-ligand interaction trained with the
structures of single-chain proteins can provide similar
level of accuracy in predicting binding affinity as the
energy function trained by the database of protein-
ligand structures (Table 2). This occurs despite the fact
that all interactions involving atom types N.ar, S.o2,
P.3, F, Cl, Br, and Met are zero in the energy function
trained by single-chain proteins only. This database
independence is also evident from the fact that the
energy function trained by protein-ligand complexes
can be directly used for protein-DNA complexes. Thus,
the results suggest that the main contribution to the
accuracy of the DFIRE energy function is from the atom
types contained in proteins. Indeed, we found that atom
types N.ar, S.o2, P.3, F, Cl, Br, and Met contribute only
8% of the contacts (at a cutoff distance of 9.5 Å) in the
high-resolution 100 protein-ligand complexes. Indeed,
upon setting all interactions involving atom types N.ar,
S.o2, P.3, F, Cl, Br, and Met to zero in the energy
function trained by the 200 protein-ligand complexes,
the correlation coefficient increases slightly from 0.63
to 0.64 for the 100 protein-ligand complexes and
decreases slightly from 0.63 to 0.62 in the testing set of
30 protein-ligand complexes. However, for specific
protein-ligand complexes, interactions involving atom
types N.ar, S.o2, P.3, F, Cl, Br, and Met may well be
important.

The DFIRE energy function developed here, however,
is not fully transferable across different systems. Al-
though the energy function can produce significant
correlations for the binding affinities of protein-ligand,
protein-protein, and protein-DNA complexes, the re-
gression slope has to be modified from one system to
another and even within the different training and
testing sets of protein-ligand complexes. This is differ-
ent from the DFIRE energy function built on 167 atom
types for protein folding and protein-protein interac-

Table 6. Comparison between Experimentally Measured Protein-DNA Binding Free Energies and the Theoretically Predicted Ones

PDB ID interfacea explb DFIREc PDB ID interfacea explb DFIREc

1cma AB/CD -5.591 -7.02 1glu B/DC -6.092 -6.62
1ckt A/BC -6.693 -7.58 1run A/CF -6.894 -6.87
1dp7 PQ/DE -6.895 -6.26 1azp A/BC -6.896 -7.11
1tf3 A/EF -7.1197 -8.93 1b69 A/BC -7.498 -7.57
1ysa AB/CD -7.599 -7.75 1dgcd AC/BD -7.57100 -7.83
1pue AB/E -7.64101 -7.61 1ais A/CE -7.7102 -9.22
1oct AB/C -7.8103 -8.68 1apl AB/D -7.82104 -7.07
1nk3 AB/P -7.88105 -7.21 1bc7 AB/C -7.9106 -7.58
2gat A/BC -8.0107 -7.38 1hcr A/BC -8.0108 -7.65
1tsr ABC/EF -8.15109 -7.61 1bp7 B/12 -8.15110 -9.23
1qrv A/CD -8.2111 -7.50 1gcc A/BC -8.25112 -7.55
1yui A/B -8.3113 -7.42 1mse AB/C -8.4114 -8.69
1tro ABCD/IJ -8.6115 -8.35 2dgcd AC/BD -8.61116 -7.96
1mdy AB/EF -8.7117 -8.23 1hcq AB/CD -8.7118 -8.33
1lmb 12/34 -8.73119 -8.65 1ytf ABCD/EF -8.8120,121 -9.64
1aay A/BC -8.9122 -8.35 1cw0 A/MNO -9.1123 -9.38
1bhm AB/CD -9.11124 -9.84 1ipp AB/CD -9.15125 -10.45
1pnrd AC/BD -9.3126 -9.38 1ihf AB/CDE -9.3127 -10.09
1cdw A/BC -9.32128 -9.58 1ecr A/BC -10.7129 -10.75
1nfk AB/CD -10.8130 -8.99 1efa AB/CD -10.80131 -9.58
1par ABCD/EF -10.90132 -10.50 1a73 ABC/EF -11.0133 -10.48
1l1m AB/CD -11.2134 -10.47 1az0 AB/CD -12.9135 -10.84
1ca5 A/BC -6.0136 -7.11

a The chain IDs that make the interface. b Experimental results (in log KD units). c DFIRE predicted values scaled by a constant factor
of 0.0017 and shifted by -5.50 in log KD units. d The complete structures were downloaded from the Nucleic Acid Database
(http://ndbserver.rutgers.edu/index.html).

An Energy Function for Protein Complexes Journal of Medicinal Chemistry, 2005, Vol. 48, No. 7 2331



tions. The regression slopes between experimental and
theoretical results for mutation-induced stability changes
and protein-protein (peptide) binding affinities are
essentially the same. Thus, increasing the number of
atom types from 19 used here may be useful to generate
a more uniform regression slope. There also exists a
different level of accuracy of the DFIRE energy function
for different systems; the correlation coefficients are
around 0.6 for different sets of protein-ligand com-
plexes, 0.7 for 82 protein-protein (peptide) complexes,
and 0.8 for 45 protein-DNA complexes. We found that
the correlation coefficients between experimental bind-
ing affinity and the number of atomic contacts at the
interface are 0.55 for protein-ligand complexes (the 100
protein-ligand set), 0.66 for 82 protein-protein com-
plexes, but only 0.21 for 45 protein-DNA complexes.
The last correlation is due to the existence of several
significant outliers (their removal will produce a cor-
relation coefficient of 0.65). Thus, the correlation be-
tween the number of interfacial atomic pairs and
binding affinities cannot fully account for the different
level of accuracy in different systems. One possible
reason is that protein-ligand interactions are more
complex than those between protein and protein and
those between protein and DNA because of the diversity
of ligand types.
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